최신 Associate-Developer-Apache-Spark 무료덤프 - Databricks Certified Associate Developer for Apache Spark 3.0
Which of the following DataFrame methods is classified as a transformation?
정답: E
설명: (DumpTOP 회원만 볼 수 있음)
Which of the following describes a valid concern about partitioning?
정답: D
설명: (DumpTOP 회원만 볼 수 있음)
The code block displayed below contains an error. The code block should save DataFrame transactionsDf at path path as a parquet file, appending to any existing parquet file. Find the error.
Code block:
Code block:
정답: D
설명: (DumpTOP 회원만 볼 수 있음)
Which of the following describes properties of a shuffle?
정답: C
설명: (DumpTOP 회원만 볼 수 있음)
The code block shown below should return all rows of DataFrame itemsDf that have at least 3 items in column itemNameElements. Choose the answer that correctly fills the blanks in the code block to accomplish this.
Example of DataFrame itemsDf:
1.+------+----------------------------------+-------------------+------------------------------------------+
2.|itemId|itemName |supplier |itemNameElements |
3.+------+----------------------------------+-------------------+------------------------------------------+
4.|1 |Thick Coat for Walking in the Snow|Sports Company Inc.|[Thick, Coat, for, Walking, in, the, Snow]|
5.|2 |Elegant Outdoors Summer Dress |YetiX |[Elegant, Outdoors, Summer, Dress] |
6.|3 |Outdoors Backpack |Sports Company Inc.|[Outdoors, Backpack] |
7.+------+----------------------------------+-------------------+------------------------------------------+ Code block:
itemsDf.__1__(__2__(__3__)__4__)
Example of DataFrame itemsDf:
1.+------+----------------------------------+-------------------+------------------------------------------+
2.|itemId|itemName |supplier |itemNameElements |
3.+------+----------------------------------+-------------------+------------------------------------------+
4.|1 |Thick Coat for Walking in the Snow|Sports Company Inc.|[Thick, Coat, for, Walking, in, the, Snow]|
5.|2 |Elegant Outdoors Summer Dress |YetiX |[Elegant, Outdoors, Summer, Dress] |
6.|3 |Outdoors Backpack |Sports Company Inc.|[Outdoors, Backpack] |
7.+------+----------------------------------+-------------------+------------------------------------------+ Code block:
itemsDf.__1__(__2__(__3__)__4__)
정답: D
설명: (DumpTOP 회원만 볼 수 있음)
The code block shown below should read all files with the file ending .png in directory path into Spark.
Choose the answer that correctly fills the blanks in the code block to accomplish this.
spark.__1__.__2__(__3__).option(__4__, "*.png").__5__(path)
Choose the answer that correctly fills the blanks in the code block to accomplish this.
spark.__1__.__2__(__3__).option(__4__, "*.png").__5__(path)
정답: E
설명: (DumpTOP 회원만 볼 수 있음)
The code block displayed below contains multiple errors. The code block should remove column transactionDate from DataFrame transactionsDf and add a column transactionTimestamp in which dates that are expressed as strings in column transactionDate of DataFrame transactionsDf are converted into unix timestamps. Find the errors.
Sample of DataFrame transactionsDf:
1.+-------------+---------+-----+-------+---------+----+----------------+
2.|transactionId|predError|value|storeId|productId| f| transactionDate|
3.+-------------+---------+-----+-------+---------+----+----------------+
4.| 1| 3| 4| 25| 1|null|2020-04-26 15:35|
5.| 2| 6| 7| 2| 2|null|2020-04-13 22:01|
6.| 3| 3| null| 25| 3|null|2020-04-02 10:53|
7.+-------------+---------+-----+-------+---------+----+----------------+ Code block:
1.transactionsDf = transactionsDf.drop("transactionDate")
2.transactionsDf["transactionTimestamp"] = unix_timestamp("transactionDate", "yyyy-MM-dd")
Sample of DataFrame transactionsDf:
1.+-------------+---------+-----+-------+---------+----+----------------+
2.|transactionId|predError|value|storeId|productId| f| transactionDate|
3.+-------------+---------+-----+-------+---------+----+----------------+
4.| 1| 3| 4| 25| 1|null|2020-04-26 15:35|
5.| 2| 6| 7| 2| 2|null|2020-04-13 22:01|
6.| 3| 3| null| 25| 3|null|2020-04-02 10:53|
7.+-------------+---------+-----+-------+---------+----+----------------+ Code block:
1.transactionsDf = transactionsDf.drop("transactionDate")
2.transactionsDf["transactionTimestamp"] = unix_timestamp("transactionDate", "yyyy-MM-dd")
정답: C
설명: (DumpTOP 회원만 볼 수 있음)
Which of the following code blocks returns a DataFrame with a single column in which all items in column attributes of DataFrame itemsDf are listed that contain the letter i?
Sample of DataFrame itemsDf:
1.+------+----------------------------------+-----------------------------+-------------------+
2.|itemId|itemName |attributes |supplier |
3.+------+----------------------------------+-----------------------------+-------------------+
4.|1 |Thick Coat for Walking in the Snow|[blue, winter, cozy] |Sports Company Inc.|
5.|2 |Elegant Outdoors Summer Dress |[red, summer, fresh, cooling]|YetiX |
6.|3 |Outdoors Backpack |[green, summer, travel] |Sports Company Inc.|
7.+------+----------------------------------+-----------------------------+-------------------+
Sample of DataFrame itemsDf:
1.+------+----------------------------------+-----------------------------+-------------------+
2.|itemId|itemName |attributes |supplier |
3.+------+----------------------------------+-----------------------------+-------------------+
4.|1 |Thick Coat for Walking in the Snow|[blue, winter, cozy] |Sports Company Inc.|
5.|2 |Elegant Outdoors Summer Dress |[red, summer, fresh, cooling]|YetiX |
6.|3 |Outdoors Backpack |[green, summer, travel] |Sports Company Inc.|
7.+------+----------------------------------+-----------------------------+-------------------+
정답: A
설명: (DumpTOP 회원만 볼 수 있음)
The code block shown below should return a DataFrame with columns transactionsId, predError, value, and f from DataFrame transactionsDf. Choose the answer that correctly fills the blanks in the code block to accomplish this.
transactionsDf.__1__(__2__)
transactionsDf.__1__(__2__)
정답: C
설명: (DumpTOP 회원만 볼 수 있음)
Which of the following code blocks reads in the two-partition parquet file stored at filePath, making sure all columns are included exactly once even though each partition has a different schema?
Schema of first partition:
1.root
2. |-- transactionId: integer (nullable = true)
3. |-- predError: integer (nullable = true)
4. |-- value: integer (nullable = true)
5. |-- storeId: integer (nullable = true)
6. |-- productId: integer (nullable = true)
7. |-- f: integer (nullable = true)
Schema of second partition:
1.root
2. |-- transactionId: integer (nullable = true)
3. |-- predError: integer (nullable = true)
4. |-- value: integer (nullable = true)
5. |-- storeId: integer (nullable = true)
6. |-- rollId: integer (nullable = true)
7. |-- f: integer (nullable = true)
8. |-- tax_id: integer (nullable = false)
Schema of first partition:
1.root
2. |-- transactionId: integer (nullable = true)
3. |-- predError: integer (nullable = true)
4. |-- value: integer (nullable = true)
5. |-- storeId: integer (nullable = true)
6. |-- productId: integer (nullable = true)
7. |-- f: integer (nullable = true)
Schema of second partition:
1.root
2. |-- transactionId: integer (nullable = true)
3. |-- predError: integer (nullable = true)
4. |-- value: integer (nullable = true)
5. |-- storeId: integer (nullable = true)
6. |-- rollId: integer (nullable = true)
7. |-- f: integer (nullable = true)
8. |-- tax_id: integer (nullable = false)
정답: E
설명: (DumpTOP 회원만 볼 수 있음)